The So-called Fibonacci Numbers in Ancient and Medieval India

نویسنده

  • PARMANAND SINGH
چکیده

What are generally referred to as the Fibonacci numbers and the method for their formation were given by Virahanka (between A.D. 600 and X00). Gopala (prior to A.D. 1135) and Hemacandra (c. A.D. 1150). all prior to L. Fibonacci (c. A.D. 1202). Narayana Pandita (A.D. 13Sh) established a relation between his srftcisi~ci-pcrirLfi. which contains Fibonacci numbers as a particular case. and “the multinomial coefficients.” ((1 IYX? Academic Prey. Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the origin of the Fibonacci Sequence

Herein we investigate the historical origins of the Fibonacci numbers. After emphasising the importance of these numbers, we examine a standard conjecture concerning their origin only to demonstrate that it is not supported by historical chronology. Based on more recent findings, we propose instead an alternative conjecture through a close examination of the historical and historical/mathematic...

متن کامل

‘Medieval’ in the Eyes of the ‘Modern’:

Presently, varied schemes of periodization of history are prevalent in historical studies, the most common being the tripartite scheme of ancient-medieval-modern periods. In European history, ancient, medieval and modern eras have remained the dominant standard epochal frontiers since the eighteenth century. In the wake of colonial rule, this scheme was applied by the European historians and or...

متن کامل

Coefficient Bounds for Analytic bi-Bazileviv{c} Functions Related to Shell-like Curves Connected with Fibonacci Numbers

In this paper, we define and investigate a new class of bi-Bazilevic functions related to shell-like curves connected with Fibonacci numbers.  Furthermore, we find estimates of first two coefficients of functions belonging to this class. Also, we give the Fekete-Szegoinequality for this function class.

متن کامل

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

An application of Fibonacci numbers into infinite Toeplitz matrices

The main purpose of this paper is to define a new regular matrix by using Fibonacci numbers and to investigate its matrix domain in the classical sequence spaces $ell _{p},ell _{infty },c$ and $c_{0}$, where $1leq p

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003